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Stability of a vortex street of finite vortices

By P. G. SAFFMAN AND J. C. SCHATZMAN
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The stability of the finite-area Kérmén ‘ vortex street’ to two-dimensional disturbances
is determined. It is shown that for vortices of finite size there exists a finite range of
spacing ratio « for which the array is stable to infinitesimal disturbances. As the vortex
size approaches zero, the range narrows to zero width about the classical von Kérmén
value of 0-281.

1. Introduction

The Karmén vortex street is a regular pattern of vortices consisting of two parallel
staggered rows, which, for a certain range of Reynolds number, is observed in the
wake of two-dimensional blunt bodies placed in a uniform stream. In a previous paper
(Saffman & Schatzman 1981) an inviscid model for the wake flow was described which
consists of two rows of staggered vortices of finite size, extending to infinity in both
directions. Steady solutions (which propagate relative to the free stream) were found
numerically, and their properties were calculated. These describe an infinite array of
uniform two-dimensional vortices, consisting of one row of identical vortices of area
A and strength —I' with centroids at positions x = 0, +1, + 2, + 3, ...,y = 0, and of
a second row of identical vortices of area A and strength +TI' with centroids at
z=d,d+l,d+2l,d+3l,...,y = —h. The frame of reference is chosen with a uniform
flow Us in the z-direction at infinity as in figure 1 so that the vortices are stationary.
It is assumed that the flow is inviscid, incompressible, two-dimensional, and, outside
the vortices, irrotational. The case 4 = d/l = 0-5 was mainly considered (for values
of g other than 0 and 0-5 translating solutions exist but the street does not move
parallel to itself; see Rosenhead (1929)). There are then two independent dimensionless
parameters h/l = «x and 4 /I* = « which determine the geometry of the street.

This paper discusses the stability of these steady solutions to two-dimensional dis-
turbances. A normal-mode analysis is carried out and the growth rates and frequencies
of the modes are calculated for a range of values of the vortex size and separation/
spacing ratio of the street. It is found that finite size can stabilize the street to in-
finitesimal disturbances. The results for superharmonic disturbances are in accord
with those predicted by energy arguments based on Kelvin’s variational principle.
It will be pointed out that a plausible but non-rigorous attempt to use these energy
arguments for subharmonic disturbances leads to fallacious conclusions.
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Ficure 1. The configuration of the fully infinite vortex street with arbitrary stagger.

2. Subharmonic Instabilities of the point-vortex array

The limiting case of point vortices (¢ = 0) was studied by von KiArmén (1912), see
Lamb (1932, § 156). It was shown that infinitesimal two-dimensional disturbances of
wavelength I/p grow like ¢, where

2 o — t B+ (42O (2.1)
" T ’ .
A = 2p(1 —p) —sech?nx, (2.2)
Bl sinh 7k(1 — 2p) + sinh 27rxp , (2.3)
cosh 7k cosh?mrx

_ cosh 2mkp _ 2p cosh k(1 — 2p)
" cosh?mk cosh 7k

. (2.4)

Note that p need not be an integer or rational. Since the steady flow has wavelength
, it follows from Floquet- or Bloch-wave theory that the normal modes of the system
(for finite as well as point vortices) are of the form

evt etneol Pz, y), (2.5)

where P(x+1,y) = P(z,y). Disturbances with p equal to an integer or zero will be
called superharmonic; they always have wavelength I. If p is not equal to an integer,
there is clearly no loss of generality in supposing that 0 < p < 1, and such disturbances
will in general have components with wavelengths greater than ! and will be called
subharmonic. Note that the properties of these disturbances (including the eigenvalue
o) must be the same for » and 1-p, i.e. the problem exhibits symmetry in p about
p = 0-5.

Figure 2 shows the regions of stable (Zg = 0) and unstable (Zg > 0) eigenfunctions
in the («, p)-plane for point vortices. It should be noted that not all eigenfunctions are
linearly unstable but for « ¥ k. there always exist unstable disturbances. For x = k.
(where cosh2 7k = 2) all the disturbances are linearly stable, and this case was identi-
fied by von Kérmén as the stable configuration of the strect. However, it was dis-
covered by Kochin (1939) that this ‘stable’ configuration is in fact unstable at
second-order approximation in the disturbance amplitude (for an elegant demon-
stration, see Domm (1956)). These higher-order studies have dealt only with the case
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Fiaure 2. The stability boundary in the periodicity—spacing-ratio (p, k)-plane for point-vortex
configurations. The growth rates are symmetric about p = 0-5 which gives also the maximum
rate of growth for all x. Curves 1 and 2 show qualitatively the two possible perturbed boun-
daries for small area. The calculations indicate that curve 1 is the true result.

p = 0-5, and it is not known whether approximation of the evolution equations to
order higher than first would lead to growing disturbances for other values of p. The
disturbances for the p = 0-5, k¥ = k case grow in time as e*¢, where ¢ > 0is proportional
to the initial disturbance, as opposed to the e”z behaviour (o independent of initial
conditions) that occurs in the unstable region away from the stability/instability
boundary.

Initially, it was hoped that an energy criterion could be used to answer this question
of finite-amplitude stability away from the stability boundary. The Kirchhoff~-Routh
path function W(z,,y,,%s, ¥, ...) (Which is a measure of the ‘interaction energy’, see
Lin (1943)) determines the motion of the vortices (x;,y,) through the relations

de,_ _ LW dy,_ 10W
dt  T,oy,” dt T,ox;’

By a trivial change of variables, say x; - — ; for vortices with I'; = — I, this becomes
a Hamiltonian system with Hamiltonian W. The right-hand sides of the (Hamilton’s)
equations may be expanded in Taylor series about the steady solutions z;,y,;. The
linearized equations reproduce figure 2. The second- and higher-order terms are, for
sufficiently small deviation from the steady state, a small correction to the linear (and
integrable) system. There exists a body of theory for such ‘nearly integrable’ Hamil-
tonian systems in the literature (see e.g. Chirikov 1979). In general, such systems
exhibit the slow-instability phenomenon known as ‘Arnol’d diffusion’. Fairly general
bounds exist for the average growth rate of this instability (e.g. Nekhoroshev 1971)
but these do not appear to provide useful conclusions for the present problem.

The stability boundaries of figure 2 will obviously be perturbed by the effect of
finite size of the vortices, and the degenerate saddle will separate into one of the

(2.8)
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FicuRre 3. Diagram of the vortex-street configuration showing the four
independent perturbations.

possibilities marked by the dashed lines in the figure. If case 1 is the situation, then
there will be stability to infinitesimal disturbances for a finite range of « in the vicinity
of k = k¢. If case 2 obtains, then finite vortex size makes the array unstable for all «.
Remember that the symmetry about p = 0-5 is valid for all «, so cases 1 and 2 are the
only possibilities.

In principle, the problem of deciding between case 1 and case 2 can be treated by
perturbation theory by expanding in powers of the area of the vortices, i.e. . However,
for reasons to be given below, it appears that the algebraic complexity is great, and
direct numerical methods were employed instead. These, of course, have the advantage
that they give results for finite areas not accessible to perturbation methods. In order
to decide between case 1 and case 2, it clearly suffices because of the symmetry of
figure 2 to consider only the subharmonic (pairing) disturbances with p = 0-5, and
we therefore restrict attention henceforth to disturbances that are periodic with
period 2] in the z-direction. Of course, there is no guarantee that p = 0-5 gives the
maximum growth rate for finite a, so that the stability boundary for moderate and
large a determined with » = 0-5 may not be accurate. Note that the superharmonic
disturbances are then automatically included, as these are trivially of period 21.

3. Analysis of the stability

It is appropriate for disturbances with period 2! to consider four independent per-
turbed vortex shapes (and positions), corresponding to the four vortices in one period
21, and extended periodically to infinity along the street, as in figure 3. The approach
is to calculate the first variation of the velocity field due to a perturbation in vortex
shape and position, and then to require that the linearized kinematic condition be
satisfied on the boundaries of the vortices. In particular, solutions are looked for that
are normal modes proportional to e’¢; an eigenvalue problem is the result.

A convenient parametrization for the vortex boundaries is a polar co-ordinate
representation

2(6) = 2,(6) +2(6),

N _ , (3.1)
2'(0) = [{;ao + n§1 (@, cosnf+b,sin n0)] e,
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Here z,(0) describes the steady boundary in question and z'(f) describes the added
disturbances.

As was shown previously (Saffman & Schatzman 1981), the complex velocity field
produced by a single row of vortices (of spacing 2I) can be calculated by integration
around the boundary of a single vortex in the row as follows:

u+"v—L lo
W=ond) %8

where z = 2+ iy is the complex co-ordinate, lower-case variables refer to the point of
evaluation of the flow field and capital variables refer to the path of integration.
When evaluated on a vortex boundary, this will give the velocity contribution on the
vortex boundaries of each vortex in the corresponding 2I-periodic row due to distur-
bances of the other three 2i-periodic vortex rows, added to the unperturbed value.
Substituting z = 2y +2', Z = Z,+ Z', and assuming constant area 4, the corresponding
first variation of the velocity contribution is
dg]dO.

i = L ([ az'
w+iv' =5— | |log
(3.3)

de
As was remarked in the previous paper, the ‘self-induced’ velocity for one row of
vortices may be written:

dn?@—Z)dZ

(3.2)

. T dZ
smEl (20— 2,) 3

+9?{ cot— l(zo Zy) (&' Z’)}

.
smgl(z—Z)

U+iv= log —i[arg(z—2Z)— t}@] +t}zZ dO—imz, (3.4)
%(z—Z)

where the arg function is taken so as to make the integrand periodic. The corresponding
first variation is then:

NP T 1 _ 2 —Z'\1dZ, |
wiv =g [#([Ferge-2-Z7 ] -2} (=7) | %

. T
smgl(zo—zo) dz’

+ | log —ifarg (z—Z,) — %@] +l}zZ’ do —inz'. (3.5)

T
37 (20— Zy)

Note that all singularities of the integrand have been removed. To calculate the
change in flow field due to the complete disturbance, three terms of the form (3.3)
and one of the form (3.5) are summed with appropriate choice for the sign of I" and
the vortex co-ordinate parameters in each case.

The kinematic condition that the vortex boundaries move with the fluid may be
written

-1% [r—R(6,t)] = 0. (3.6)
Here
R(6,t) = Ry(0)+ R'(6,),

D @ o 1 2 (3.7)
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where, as before, the subscript zero refers to the unperturbed quantity and the prime
refers to added perturbations. Also, », and u, are the polar velocity components. The
solutions of interest are normal modes with perturbations proportional to e°t, so that

R'(0,t) = et R'(0), wu(r,0,t) = uy(r,0)+etu'(r,0), (3.8)

where the latter holds for each velocity component. To leading order
u(r, 0) = [uo+e"t (R’ Zoyw )] (Bo, 0) (3.9)
for each velocity component. Equations (3.7)-(3.9) may be substituted into (3.6) and

terms of second and higher order in the perturbation omitted, giving

i Oy p,  1dR, gy 1, 1 dR, ., UgodR'
“tor X TR0 ( "+_R) R g ot +g g 310

where now all quantities are evaluated on r = Ry(6), and use has been made of the
fact that

1dR,

Upg— R dd Yugo=0 on r=R, (3.11)

The left-hand side of (3.10) is the perturbation in normal velocity component duxq
divided by the geometric factor

cosvs[l+(%%) ] , (3.12)

where the effect of the change in normal direction due to the perturbation has been
omitted. Also, u,, and the unperturbed tangential velocity component u,, are related by

Ugg = Uy COS Y, (3.13)
so that (3.10) may be written

’

= ! _ oos? Uy @I
dun = ocos R’ —cos ﬂRo R

Q.o R’ + cos? (3.14)

1d
”R,2 o

This may be equated to the corresponding quantity calculated by the integration
above (i.e. by (3.3) and (3.5)) and using

duy = cos (u ——ﬁ ’)
n = O o 40 (3.15)
U, =u'cosf+v'sinf, usg=—u'sinf+v cosb.
After substituting (3.1) and evaluating at the 2N + 1 points
277 .
= I e — = P .16
0 01—2N+1 (.7 0’1: ’2N) (3 )

the result is a generalized eigenvalue problem of the form

Aw = oBw, (3.17)
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where A and B are 8N + 4 by 8N + 4 matrices and w is a vector containing the four sets
of 2N + 1 Fourier coefficients from (3.1). The real parts of the eigenvalues of this
system then give the growth rates of the corresponding normal modes. Inspection
leads to the conclusion that, if o is an eigenvalue, then so are — o, o*, and — o*. Thus,
it is evident that, at best, a steady state may have only normal modes with zero linear
growth rate, and otherwise the state is linearly unstable.

For numerical purposes, the system (3.17) may be simplified somewhat by recog-
nizing the symmetry of the problem. It is sufficient to consider disturbances where the
vortex-shape perturbations 2’ are negative for vortices of rows 1 and 2 above, and
similarly for rows 3 and 4. This simplification reduces the size of the system to 4N + 2
equations in two sets of Fourier coefficients. Values of N from 10 to 25 were used,
depending on the size of the vortices.

Computations of the eigensystem were performed using the EIGZF subroutine in
the IMSL library on an IBM 3032 computer (64 bit floating point). Some computational
difficulties were encountered; an explanation follows. Note that, for isolated circular
vortices of area 4 and circulation I', normal-mode perturbations exist of the form
(see Lamb 1932, pp. 230-1)

R’ = ecosmbert, o= %i%{(m— 1) (m=2734,...). (3.18)
Since the corresponding flow-field perturbations fall off in distance » as »—™-1, and
since small-area vortices for the street are nearly circular, it is evident that, for small
A and large m, there will exist such solutions for the street. These in fact are the
superharmonic disturbances. For small area 4, these eigenvalues are much larger in
modulus than the subharmonic (p = 0-5) modes, which are bounded as A decreases.
In fact, although this behaviour is most severe for small areas, for all states that were
computed, these ‘nearly isolated’ modes had eigenvalues with dominating moduli.
This characteristic showed itself in a great sensitivity of the calculated small eigen-
values to errors in the steady calculations (hence the matrices A and B). Typically,
an error of roughly 0-1 %, in radius or tangential velocity completely destroyed the
small-eigenvalue computation. A second computational problem was failure of con-
vergence of the iterative procedure for eigenvalue and eigenvector computation. This
difficulty usually manifested itself near the stability/instability interface, and the
explanation is not clear.

The results of the stability calculations are tabulated in table 1 and summarized in
figure 4. Qutside of the indicated region in the («, «)-plane, there are modes with positive
growth rates, and hence these states are linearly unstable. Inside this region, there are
no such modes (with z-period 27). With the exception of the smaller-energy state in
the non-unique region, all eigenvalues corresponding to superharmonic disturbances
were found to be purely imaginary. Aside from the trivial modes (uniform displace-
ments) all non-growing modes are found to be given by (3.18) approximately with best
matching for large m. There is agreement with the unsteady initial-value calculations
of Christiansen & Zabusky (1973), as indicated in the figure. The superharmonic
disturbances were always stable except for the smaller-energy solution in the non-
unique region between curves 1 and 2.

For small areas, the width in « of the stability region decreases and a plot of calcu-
lations in the vicinity (figure 5) indicates that the critical value of area a at which
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A l l e A
x B T =7 T loal £l

0-2 0 0-278 447 © 0-298 25 0-726 56
0-49141(—3) 0-27845 0-584 48 0-2983 07266
0-43903(—1) 0-27586 0-22718 0-2996 0-7113
0-69626(—1) 0-27204 0-19081 0-3003 0-6886
0-93758(—1) 0-26704 0-16758 0-3000 0-6592
0-13126 0-25709 0-14180 0-2959 0-5999
0-189 44 0-23839 0-11485 0-2732 0-4797
0-26522 0-21281 0-43904(—1) 0-1007 0-2672

0-23 0 0-309248 [oo) 0-184 51 0-76342
0-78551(—4) 0-30925 0-73921 0-1845 0-7634
0-54099(—1) 0-30609 0-21939 0-1890 0-7467
0-11189 0-29933 0-17425 0-1961 0:6950
0-16503 0-28125 0-13271 0-1948 0-6242
0-19545 0-27142 0-12026 0-1882 05754
0-23587 0-25755 0-10691 0-1603 0-4951
0-29187 0-23803 0-92648(—1) 0-8594(~1) 05671

0-25 0 0-327897 © 0-109 85 0-77768
0-78549(—4) 0-32790 0-74559 0-1099 07777
0-57877(—1) 0-32490 0-220 36 01154 0-7632
0-99641(—1) 0-31889 0-17752 0-1201 0-7360
0-10711 0-31748 0-17187 0-1204 0-7300
0-11506 0-31587 0-16628 0-1202 0-7232
0-19170 0-29544 0-12734 0-7787(—1) 0-6522
0-20770 0-29032 0-12144 0-1709(—1) 0-6427
0-22598 0-284 25 0-11535 0 0-5304/0-789 6
0-247 14 0-27700 0-10900 0-2075 0-7554
0-27187 0-26835 0-10241 0-2384 0-6442

0-26 0 0-336666 0 0-73237(—1) 0-78198
0-12059 0-32466 0-16583 0-7640(—1) 07316
0-158 74 0-31581 0-144 61 0-4205(—1) 0-7026
0-16438 0-31432 0-14195 0-2596(—1) 0-6986
0-17028 0-31273 0-13927 0 0-6688/0-7204
0-212 58 0-30011 0-12270 0 0-5357/0-8620

0-27 0 0-345072 © 0-37231(—1) 0-78452
0-78547(—4) 0-34507 0-752 32 0-3723(—1) 0-7845
0-52228(—1) 0-34315 0-23519 0-4078(—1) 0-7760
0-11023 0-33612 0-17615 0-2624(—1) 0-7487
0-11787 0-33479 0-17091 0-6564(—2) 0-7663
0-12595 0-33328 0-16573 0 0-7162/0-7622
0-20142 0-31468 0-12977 0 0-5489/0-894 1
0-216 61 0-31012 0-12437 0-1387 0-1043(+1)
0-23373 0-30473 0-11880 0-2870 0-9221
0-25327 0-29833 0-11302 0-3419 0-8028

0-280 54 0 0-353646 © 0-34637(—4) 0-78540
0-78546(—4) 0-35355 0-756 00 0-3369(—4) 0-7854
0-28358(—2) 0-35354 0-470 61 0-3920(—4) 0-7854
0-38640(—2) 0-35354 0-44599 0-2533(—4) 0-7854
0-40889(—2) 0-35354 0-44148 0-1516(—4) 0-7854
0-43203(~2) 0-35354 0-43710 0 0-7853/0-7854
0-50531(—2) 0-35353 0-424 64 0 0-7853/0-7854

0-280 549 0 0-353 553 © 0-32318(—5) 0-78540
0-78546(—4) 0-35355 0-75601 0-2047(—5) 0-7854
0-70738(—3) 0-35355 0-581 10 0-3719(—5) 0-7854
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A l l » 3
x » t o o r 7l r 1l

0-12276 0-36896 0-18181 0-6074(—1) 0-7624
0-13757 0-36718 0-17285 0-3000(—1) 0-7600
0-14546 0-36613 0-16848 0 0-7270/0-7915
0-201 65 0-356 51 0-14312 0 0-5917/0-1003(+1)
0-23845 0-34827 0-13039 0-3926 0:1030(+1)
0-25286 0-344 66 0-12600 0-4485 0-9418

0-32 0 0-381908 0 0-1310 0-7744
0-14979 0-37391 0-16988 0-7580(—1) 0-7607
0-16285 0-37224 0-16333 0-1929(—-1) 0-7357
0-16972 037129 0-16010 0 0-7259/0-8019
0-21245 0-36426 0-14273 0 0-6011/0-1101(+ 1)
0-23075 0-36066 0-13642 0-3310 0-1107(+1)

0-33 0 0-388296 e} 0-16194 0-76852
0-78542(—4) 0-38830 0-77438 0-1619 0-7685
0-11194 0-38503 0-196 64 0-1495 07610
0-16992 0-37975 0-16377 0-1016 0-7639
0-18717 0-37759 0-15623 0-7995(—1) 0-7634
0-19633 0-37633 0-15252 0 0-7078/0-8606
0-21589 0-37337 0-14518 0 0-6398/0-1061(+ 1)
0-22640 0-37164 0-14153 0-2403 0-1153(+1)
0-24924 0-36751 0-13421 0-4310 0-1016(+1)
0-305 62 0-35523 0-11902 0-5504 0-7343

0-34 0 0-394 380 0 0-19186 0-76160
0-18987 0-38583 0-15893 0-1304 0-7724
0-20391 0-38423 0-15338 0-8383(—1) 0-7898
0-21124 0-38334 0-15065 0 0-7724/0-8392
0-22265 0-38187 0-14658 0 0-6925/0-1040( + 1)
0-226 58 0-38134 0-14524 0-1264 0-1156(+1)
0-23463 0-38022 0-14256 0-2827 0-1112(+1)

0-35 0 0400170 e} 0-22077 0-753173
0-78541(—4) 0-40017 0-78227 02208 0-7537
0-76127(—1) 0-39951 0-23509 0:2195 0-7522
0-20899 0-208 99 0-39237 0-1911 0-7859
0-23583 0-38972 0-14601 0-1738 0-1088(+1)
0-24533 0-38868 0-14298 0-1708(—1) 0-1174(+1)
0-25515 0-38756 0-13998 0-4067 0-1008(+1)
0-27583 0-38505 0-13407 0-5091 09151

04 0 0:425 067 e} 0-349 86 0-70317
0-78319(—2) 0-42508 0-43669 0-3499 0-7032
0-68688(—1) 0-42557 0-26392 0-354 2 07039
0-17769 0-42792 0-18863 0-3913 0-7074
0-28875 0-43949 0-15123 05747 0-6924
0-30799 0-45558 0-14654 0-7112 0-6083
0-293 28 047296 0-14969 0-3436 0-5366

0-5 0 0-458576 © 0-53591 0-57415
0-77869(—2) 0-45859 0-48149 0-5360 0-5742
0-65486(—1) 0-45962 0-31214 0-5448 0-5734
0-15776 0-464 87 0-24282 0-5958 0-5623
0-24031 0-476 59 0-21092 0-7247 0-5115
0-26263 0-48525 0-20473 08446 0-4515
0-263 61 0-48779 0-20449 0-8971 0-4221
0-26285 0-48892 0-204 67 0-9293 0-4003

Note: Numbers in parentheses indicate powers of 10 that multiply the preceding mantissas.

TaBLE 1
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Ficure 4. A plot of the area—spacing-ratio (@, «)-plane. Curve 1 denotes the maximum area
for a given spacing ratio. The segment corresponding to smaller « should be regarded as a lower
bound for the maximum area because slow convergenece in this region made it difficult to find
the precise a at which vortices touched. Above curve 2, there are two solutions for a given pair
(@, k). The enclosed central region has neutral linear stability ; configurations outside this region
are linearly unstable. Curve 3 (see §4) shows the line E; = E,, below and to the right E; > E;.
Curve 4 shows the largest area for which configuration (2) exists. The symbols x mark stable
and O mark unstable states according to Christiansen & Zabusky (1973).

stabilization occurs, asymptotically for small area, is approximately

a~ 1-31(ke— k)t (K < ko),
(3.19)
a~ 0-78(k—ke)t (k> K¢).
This approximate result indicates for the following reason that its exact calculation
by perturbation analysis may be a laborious task. When a = 0 and p = 0-5, the eigen-
values are the roots of the quartic

o4+ 2(B2— A2) 02 + (B + A% = 0, (3.20)

It is expected that the coefficients of the equation for the eigenvalues are analytic
functions of x and «. Hence, for a <€ 1, the perturbed eigenvalues are roots of the
quartic
o+ [(2(B?~ 4%) + a¥fy(k) + alfy(x) +...] 0% + [(B2 + A2)2 + a%gy(K) + a'g,(x) +...] = 0.
(3.21)
(Invariance to changes in the sign of the vorticity requires the coefficients to be even
functions of «.) The roots will, as functions of a, have branch-point singularities,

corresponding to a change in stability of the system, where the roots of the quartic
are not distinct, i.e. when

—16A42B% + [4(B2— A% f,— 4g,]a®+ [4(B2 — A2) f, +f2 —4g,Jab+... = 0. (3.22)
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Fiaure 5. A logarithmic plot of the critical area a at which stabilization
occurs versus the distance in x away from x, = 0-280 549926... .

The results shown in figure 5 indicate that, when expanded in k — . as well as «, this
equation takes the approximate form

1-04(k — k)2 — 2-32a(k — k) +at = 0. (3.23)

The principal point, however, is that it is necessary to go to fourth order in « in order
to determine the behaviour of the eigenvalues for small area.

4, The energy criterion for stability

It was pointed out by Kelvin (1910, p. 116) (see also Arnol’d 1980, p. 335) that, for
given vorticity and momentum, steady states correspond to stationary points of the
kinetic energy with respect to kinematically allowable isovortical perturbations. The
steady state is then stable if it is a local mazimum or minimum in energy.

For this problem, assuming perturbations periodic in the streamwise direction (say
with period N1, N an integer), it is sufficient to apply the above criterion to one period
of the flow field. Holding the vorticity constant, and assuming that vortices of opposite
sense do not amalgamate, the requirement of kinematically allowable perturbations
forces the total area of the vortices of each sense to remain unchanged. The condition
of momentum invariance requires that the components of hydrodynamic impulse per
unit length,

1 [Nt X
Iz=—-1v—lfo . wydxdy:T, (41)
L wded 42
I"=—_1V—lf0 f—wwx?y=0. ()

stay constant. This is ensured by keeping the distance between the centroids of the
two rows constant. In the following discussion it will be assumed that N = 2.



Stability of a vortex street of finite vortices 183

D €

0] ()

R‘ 14, E:A
3)

o
4
Ficurk 6. The four vortex configurations for the energy criterion for stability.

Now consider a system with period 2/, and consider the following four configurations
(see figure 6):

W l=2, d=1l, h=h, A=24A4,
2 =2, d=0, h=h, A=24,; 43
@3 l=l, d=3, h=h, A=A, “3)

@) l=1l, d=0 h=h, A=A,

These states are apparently unique for small values of @ (below curve 2 in figure 4
for states (1) and (8)). It is clear that these four states satisfy the above conditions
(4.1) and (4.2). Presumably, there are other steady states that do so, such as finer
splittings and multiple-vortex layers, but the existence of such configurations is not
crucial to this argument, as their energy is believed to be less than that of configuration
(4) because of the general consideration that spreading out the vorticity of one sign
and mixing the vorticity of opposite signs reduces the energy (Onsager 1949). We are
concerned with the stability of configuration (3) to superharmonic disturbances of
period I, in which all vortices in a row are disturbed in the same way, and to sub-
harmonic disturbances of period 21,.

Calculations based on the circular-vortex approximation (Saffman & Schatzman
1981) indicate that the energies of the four steady states can be ranked as follows when
o = Ay/l} is small:

E,>E,>E;>E,. (4.4)

Since E is clearly bounded above, E, is an absolute maximum (since otherwise there
would have to be another steady state with the same periodicity and greater energy)
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and configuration (1) is stable; it follows from the similarity of (1) and (3) that con-
figuration (3) is stable to all superharmonic disturbances, and this will remain true for
all « below curve 2 in figure 3. (When there are two states, the one with less energy will
be unstable.) This confirms our calculations of superharmonic instability but state (3)
is not stable to subharmonic disturbances for x outside the range shown in figure 4 and
will therefore be in this range a minimax of energy.

Now it can be shown from calculations of the system with d = 0 that when « is
large it is possible for By < E; to occur. When this problem was first studied, it was
speculated that a mechanism for the stabilization of configuration (3) against sub-
harmonic infinitesimal and finite-amplitude disturbances is that the drop in E, below
E, for sufficiently large area results in a change in the topology of the energy surface
in the infinite-dimensional configuration space (for this configuration) so thatit becomes
a local maximum in energy. Non-dimensionalization leads to T' = I-1I"*{(a, k, ) for

the energy per unit length of a given steady state (assuming it exists). The condition
that E, = E4 then leads to:

2?(*}&, ‘}K: O) = ﬁ(ai K, i): (4'5)

where @ and x are the parameters associated with configuration (3). The result of
applying this criterion is shown by curve 3 of figure 4. It was observed that for the
} = 0 cases (configurations (2) and (4)), solutions exist only for vortices up to a limiting
area. As the vortex area approaches this limit adjacent vortices in opposite rows
approach each other. It is believed that this behaviour is qualitatively similar to that
observed for a pair of counter-rotating vortices by Pierrehumbert (1980). For small «,
the limit occurs at small area, and, since interactions between neighbouring pairs are
then small, the counter-rotating vortex pair should indeed be a good approximation.
Curve 4 of figure 4 represents this approximation. Some calculations for the exact
problem were attempted and are in reasonable agreement with curve 4 (the approxi-
mate calculated limiting areas were always less than curve 4 and within about 25 9,).
However, accurate calculation of the limiting area is prohibitively expensive, and was
not undertaken. According to this argument, the region of stability lies between
curves 3 and 4 in figure 4 and is moreover a region of stability to finite-amplitude
disturbances that are not too large. The results of the linear stability analysis shows
that this argument is fallacious. Incidentally, there is no evidence to suggest that the
symmetrical configuration (d = 0) can be stabilized by finite size, but Taneda (1965)
reported that oscillation of the body produced streets of symmetrical vortices. We
can offer at present no explanation of this phenomenon.

§. Conclusion

We have generalized von Kdrmén’s analysis of the linear stability of the point-vortex
street to vortices of finite size and demonstrated that finite size can stabilize the array.
The boundary of the linear-stability region for subharmonic disturbances of period
twice the separation is shown in figure 4. The open questions deal with nonlinear
stability and with stability to more general disturbances. At present, there seems to
be no way to study the former question other than by direct numerical calculation of
an initial-value problem. This was carried out to some approximation by Christiansen
& Zabusky (1973), as commented earlier, and their results indicate that linear stability
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implies nonlinear stability or, at least, very slow growth. The possibility of unstable
disturbances of more general character than those considered here could also be
investigated in this way.

For point vortices, the equations of motion amount to a Hamiltonian system of a
finite number of degrees of freedom (depending on the assumed periodicity) and the
theory of nearly integrable systems (e.g. see Chirikov 1979) suggests that this system
is subject to slow instability (‘Arnol’d diffusion’). However, it may be that the in-
stability is so slow that streets of physical interest are in a practical sense stable.
This question has not been resolved. Intuitively, one can perhaps expect this behaviour
to persist to the finite-area case, but it would be worth while to investigate this matter
further.

The importance of studying the stability to three-dimensional disturbances goes
without saying, but this is a difficult problem at present.

This work was supported by the Department of Energy (Office of Basic Energy
Sciences). We acknowledge with gratitude the granting of time by Control Data
Corporation on the CYBER 203 computer at the C.D.C. Service Center, Arden Hills,
Minnesota, where much of the more difficult computing was carried out.
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